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1. INTR~DuCTJ~N 

In an important class of “noncooperative” environments, it is natural to 
assume that players can freely discuss their strategies, but cannot make 
binding commitments. In such circumstances, agreements among the 
players are meanirigless unless they are self-enforcing. Clearly, then, any 
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meaningful agreement must, for each player, prescribe a strategy which is a 
best response to those indicated for other players; that is, agreed upon 
strategies must constitute a Nash equilibrium. However, while the Nash 
best-response property is certainly a requirement for self-enforceability, it is 
not generally sufficient: it is frequently possible for coalitions of players to 
arrange plausible, mutually beneficial deviations from Nash agreements. 
Here we provide a stronger notion of self-enforceability that accounts for 
coalitional deviations, and label the class of efficient self-enforcing 
agreements “coalition-proof.” 

To see the potential importance of such non-binding communication, 
consider the following pure coordination game. The game involves two 
players, each of whom names either “heads” or “tails.” If they “match” each 
receives a payoff of one; otherwise, they receive zero. As is well known, 
there are three Nash equilibria: (heads, heads), (tails, tails), and a mixed 
strategy equilibrium in which each player places equal probability on the 
two possibilities. In a one-shot game with no preplay communication, the 
mixed strategy equilibrium is descriptively appealing (presumably, each 
player is indifferent between his two choices, and matching is observed only 
half of the time in one-shot trials with distinct players). Suppose, though, 
that non-binding preplay communication between the players is possible. 
In that case, we would expect the players to match in all trials, since agree- 
ing to one of the pure strategy equilibria is both self-enforcing and Pareto 
superior to the mixed strategy equilibrium. 

Considerations of this sort have motivated the common practice of 
refining the Nash equilibrium set by restricting attention to its efficient 
frontier (we will refer to this practice as the Pareto dominance refinement). 
While appealing in two player games, this procedure is, more generally, 
unsatisfactory. A difficulty arises because this practice implicitly assumes 
that no proper subset of players can privately communicate, so that in 
reaching a meaningful agreement, the whole set of players need only 
eliminate incentives for unilateral deviations. For environments in which 
players can freely discuss their strategies, however, it seems far more 
natural to assume that any group of players can agree privately upon a 
joint deviation. In that case, any meaningful agreement by the whole set of 
players must be stable against deviations by all possible coalitions of 
players. Generally, then, one should apply a Pareto refinement not to the 
Nash set, but rather to the set of coalitionally self-enforcing agreements (a 
set which is typically strictly smaller). 

Another commonly used refinement, the notion of Strong Nash 
equilibrium (Aumann [ 1 I), does require stability against deviations by 
every conceivable coalition. An equilibrium is strong if no coalition, taking 
the actions of its complement as given can cooperatively deviate in a way 
that benefits all of its members. More formally, for the n-player game with 
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strategy sets (S’};=, and payoff functions { gj: n;=, S’ -+ R},“= i, Strong 
Nash equilibrium is defined by, 

DEFINITION. s* E n;=, Sj is a Strong Nash eqzdibrium if and only if for 
all J 2 {l,..., n } and for all sJ E ni, J Si there exists an agent i E J such that 
g’(s*)a g’(s,, s*_~) [where SF,= {s,?},~~]. 

Thus while the Nash concept defines equilibrium only in terms of 
unilateral deviations, Strong Nash equilibrium allows for deviations by 
every conceivable coalition. We believe, however, that the Strong Nash 
concept is actually “too strong.” In particular, coalitions are allowed too 
much freedom (in fact, complete freedom) in choosing their joint 
deviations: while the whole set of players must originally be concerned with 
arriving at an agreement that is immune to deviations by any coalition, no 
deviating group of players (including the coalition of the whole) faces a 
similar restriction. In environments with unlimited private communication, 
however, any meaningful agreement to deviate must also be self-enforcing 
(i.e., -immune to deviations by subcoalitions). This inconsistency in the 
Strong Nash concept most clearly manifests itself in the stringent 
requirement that a Strong Nash equilibrium must be Pareto efficient 
(within the entire feasible payoff space of the game). As a result of this 
requirement, Strong Nash equilibria almost never exist. ’ 

In this paper, we introduce a new refinement of the Nash set, the concept 
of Coalition-Proof Nash equilibrium, that is designed to capture the notion 
of an efficient self-enforcing agreement for environments with unlimited, 
but nonbinding, pre-play communication. An agreement is coalition-proof 
if and only if it is Pareto efficient within the class of self-enforcing 
agreements. In turn, an agreement is self-enforcing if and only if no proper 
subset (coalition) of players, taking the actions of its complement as fixed, 
can agree to deviate in a way that makes all of its members better off. 
However, in contrast to the strong equilibrium concept, we do not enter- 
tain all possible deviations by such coalitions. Internal consistency requires 
us to judge the validity of deviations by the same criteria which we use to 
judge the original agreement-a valid deviation must be self-enforcing, in 
the sense that no proper sub-coalition can reach a mutually beneficial 
agreement to deviate from the deviation. Likewise, any potential deviation 
by a sub-coalition must be judged by the same criterion, and so on.2 

’ However, certain important classes of voting games do possess strong Nash equilibria 
(see, e.g., Peleg [9]). 

‘The reader should note that our notion of self-enforcability is restrictive in one potentially 
important respect: when a deviation occurs, only members of the deviating coalition may con- 
template deviations from the deviation. This rules out the possibility that some member of the 
deviating coalition might form a pact to deviate further with someone not included in this 
coalition. We return to this issue in Section 2. 
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As is evident, the consistent application of the notion of self-enfor- 
ceability involves a recursion. This recursion makes the formal definition of 
Coalition-Proof Nash equilibrium which we present below somewhat 
tricky. However, by consistently applying the requirement of self-enfor- 
cability, the Coalition-Proof Nash equilibrium concept avoids the incon- 
sistencies of the Strong Nash concept. In addition, by requiring agreements 
to be self-enforcing against all possible coalitional deviations, the coalition- 
proof concept corrects the difficulty involved in the use of the Pareto 
dominance refinement. 

In order to highlight the distinction between the Pareto dominance 
refinement, Strong Nash equilibria, and Coalition-Proof Nash equilibria, 
we consider a simple example. In the following three player game, player A 
chooses rows, player B chooses columns, and player C chooses boxes3: 

TABLE I 

A Three Player Game 

c, C2 

B, B2 B, B2 

A, I. I. -5 -5. -5, 0 A, -1, -1,5 -5, -5,0 
A2 -5, -5, 0 0, 0, 10 A2 -5. -5,0 -2, -2, 0 

Suppose that the three players wish to come to an agreement regarding the 
strategies that they will each play. As we argued above, any meaningful 
agreement must be a Nash equilibrium. In this game there are two Nash 
equilibria, (A*, B,, C,) and (A,, B,, CJ. Note, also, that the first of these 
equilibria Pareto dominates the second. Should we therefore expect 
(AZ, B,, C,) to be the chosen agreement? We believe not. If players have 
unlimited opportunities to communicate, (A,, B,, C,) seems an implausible 
outcome-player C should recognize that players A and B (whose interests 
are completely coincident throughout the game) would have the oppor- 
tunity and the incentive to jointly renege on the agreement by playing 
(A,, B, ) [note that this is a Nash equilibrium for A and B, holding C’s 
action as fixed]. Here the only meaningful (i.e., self-enforcing) agreement is 
the Coalition-Proof Nash equilibrium (A,, B,, C,). Finally, what can be 
said about the set of Strong Nash equilibria? As is easy to see, no Strong 
Nash equilibria exist for this game (since (A,, B,, C,) is not Pareto 
efficient ). 

3 We would like to thank Andreu Mas-Cole11 for suggesting the use of this example. 
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The paper is organized as follows. A formal definition of Coalition-Proof 
Nash equilibrium is presented in Section II and its relation to the two 
more familiar concepts mentioned above is discussed. Section III considers 
the question of existence. Unfortunately, games can lack a Coalition-Proof 
Nash equilibrium. This should not be surprising given the conceptual 
similarities between coalition-proofness and other coalition-oriented 
notions such as Strong equilibria and the Core. The concept is, 
nevertheless, useful in a variety of circumstances; several economic 
applications are discussed in a companion piece (Bernheim and 
Whinston [4]). We generalize the analysis to extensive form games in Sec- 
tion IV, where we define Perfectly Coalition-Proof Nash Equilibria. The 
paper closes with a brief conclusion. 

II. DEFINITIONS 

Our objective is to define a notion of equilibrium which represents the 
efficient frontier of meaningful agreements for environments in which com- 
munication is possible, but binding commitment is not. By “meaningful” we 
mean that the agreement is self-enforcing, in the sense that no coalition can 
(taking the strategies of its complement as fixed) make a mutually 
beneficial, self-enforcing joint deviation from it. Note that the intuitive 
definition is naturally recursive-we require a notion of self-enforceability 
(of deviations for a coalition) to define self-enforceability (of original 
agreements). To avoid the confusion which can easily arise from this 
apparent circularity, it is helpful to keep the following scenario (intended 
only to aid understanding of our definition) in mind. 

A group of agents is to play a game, as follows. All players meet in a 
room, where free discussion of strategies is permitted. Any player may leave 
the room at any time, but upon leaving must cast a secret “ballot,” upon 
which he indicates his choice of strategy. An agreement among the players 
is meaningful only if, by consenting, casting his ballot, and leaving the 
room, each player indicates his intent to cooperate. But then the following 
problem arises: if any player leaves the room first, those remaining may 
take his action as fixed, and reach a new agreement among themselves. The 
first to leave may, however, be comforted by the following thought: any 
agreement among the remainder will also be suspect, since every other 
player may be reluctant to be the next to leave. We wish to find an 
agreement such that, regardless of the order of exit, the remainder will 
never wish to deviate. 

We can find such an agreement by backward induction. The last player 
left in the room clearly has no incentive to deviate if his last agreement had 
the best-response property. The last two players in the room may therefore 



www.manaraa.com

b BERNHEIM, PELEG, AND WHINSTON 

deviate to any Nash equilibrium in the game induced on them by others’ 
choices; in a self-enforcing agreement, each pair of players must therefore 
be playing a Pareto undominated Nash equilibrium in the component 
game induced on the pair by the other players’ actions. The induction 
argument continues through the total number of players. 

Formally, consider an n-player game r = [ ( gi} ;= , , { S’ } ;= ,I, where S’ is 
player is strategy set and g’: n:= I Sj --) R is player z’s payoff function, Let 
J be the set of proper subsets of {l,..., n}, and denote an element of J (a 
“coalition”) as JE J. Let SJr ni, J S’; for the case of {l,..., n} we will 
simply write S. Also let -J denote the complement of J in {l,..., n}. 
Finally, for each sYJ E S J, let f/s? J denote the game induced on subgroup 
J by the actions SO J for coalition -.I, i.e., 

where 8’: SJ + R is given by g’(s,) - g’(s,, SO J) for all i E J and sJ E SJ. 
We are now prepared to define self-enforceability and coalition-proofness 

recursively. 

DEFINITION. (i) In a single player game r, s* ES is a Coalition-Proof 
Nash equilibrium if and only if s* maximizes g’(s). 

(ii) Let n > 1 and assume that Coalition-Proof Nash equilibrium has 
been defined for.games with fewer than IZ players. Then, 

(a) For any game r with n players, s* E S is self-enforcing if, for all 
JE J, sJ* is a Coalition-Proof Nash equilibrium in the game 
r/s: J’ 

(b) For any game r with n players, s* E S is a Coalition-Proof 
Nash equilibrium if it is self-enforcing and if there does not 
exist another self-enforcing strategy vector SE S such that 
g’(s) > g’(s*) for all i= l,..., n. 

The logic is simple: an agreement is coalition-proof if it is efficient within 
the class of self-enforcing agreements, where self-enforceability requires that 
no coalition can benefit by deviating in a self-enforcing way. Observe that 
this notion of equilibrium has an appealing internal consistency: in any 
coalition-proof equilibrium, every subgroup plays a Coalition-Proof Nash 
equilibrium strategy vector in its component game. Not all refinements 
have this same internal consistency. For example, Pareto undominated 
Nash equilibria may entail various subgroups playing Pareto dominated 
equilibria in the component game induced upon them by others’ prescribed 
actions. 

The reader should note that our notion of self-enforcability is restrictive 
in one potentially important respect: when a deviation occurs, only mem- 
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bers of the deviating coalition may contemplate deviations from the 
deviation. This rules out the possibility that some member of the deviating 
coalition might form a pact to deviate further with someone not included 
in this coalition. Such arrangements are clearly much more complex than 
those made entirely by members of the coalition itself. In particular, 
coalition members have observed the original deviation first hand. In con- 
trast, nonmembers lack verifiable information on prior deviations. At 
times, the willingness of some party to form a coalition may reveal his 
agreement to some prior deviation (in the absence of a prior deviation, it 
would not be in his interests to join the coalition) but may not identify that 
deviation. Similarly, the unwillingness of some party to join a coalition 
may also be informative. Further, there may be times when one player 
wishes to convince another that a prior deviation exists, in order to secure 
cooperation in deviating further. Implicitly, we assume that these infor- 
mation problems cripple any attempt to form coalitions consisting of both 
members and nonmembers from some other deviating coalition. Clearly, 
further is required to resolve these issues in a fully satisfactory way. 

We now turn to the relationships between the set of Coalition-Proof 
Nash equilibria (C), the set of Strong Nash equilibria (S), and the set of 
Nash equilibria which are not Pareto dominated by any other Nash 
equilibrium (P). It is easy to check that strong equilibria are both 
coalition-proof and Pareto undominated (the former relationship follows 
from the fact that the Coalition-Proof Nash equilibrium concept differs 
from the Strong Nash equilibrium concept precisely because it restricts the 
set of feasible coalitional deviations). However, for n > 2 it is impossible to 
establish an inclusion relation between C and P. 

For the special case of 2 player games, it follows immediately from the 
above definitions that C = P. This is natural: for 2 player games, the only 
proper coalitions are single agents, and the best-response property alone 
guarantees that single agents cannot profitably deviate. Thus, the “best” 
Nash equilibria are, in this case, coalition-proof. Furthermore, as long as 
the set of Nash equilibrium payoffs is compact (this requirement is satisfied 
under mild regularity conditions), it is easy to see that C is nonempty. 
However, for games with three or more players, existence becomes 
problematic. We now turn to this issue. 

III. EXISTENCE 

While it would be reassuring to discover that Coalition-Proof Nash 
equilibria exist for some very general class of games, we have, unfor- 
tunately, not found this to be the case. This revelation should not be too 
surprising, given the conceptual similarly between coalition-proofness and 
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other coalitionally oriented concepts such as Strong Nash equilibrium and 
the Core. 

Non-existence can be established in very simple three player games. We 
provide the following example.4 

EXAMPLE. Consider a three player (A, B, C) game of pie division, where 
the allocation is decided by majority. That is, all players simultaneously 
announce allocations; if two or more players propose the same allocation, 
then that division is implemented, while if all disagree, the pie is discarded, 
Players wish to maximize the expected size of their shares. 

It is straightforward to establish that no Coalition-Proof Nash 
equilibrium exists for this game. Consider any mixed strategy equilibrium, 
(7tA*,~k xr) (where rr,? is a probability distribution over feasible 
allocations). Let e* denote the expected size of r*s share in this equilibrium. 
Without loss of generality, assume 1 - ez - er = q > 0. Now suppose that B 
and C form a coalition, and announce the allocation (0, ei + q/2, e; + q/2) 
(where the entries indicate A, B, and C’s shares, respectively). Clearly, this 
deviation benefits both players. Furthermore, since (n,*, n$, n:) was an 
equilibrium, no other choice can yield an expected payoff for i exceeding 
e,? (i= B, C). Also note that the deviation is Pareto efficient for B and C. 
Combining these observations, we conclude that the deviation is self- 
enforcing. Thus, the original equilibrium is not coalition-proof. 

Thus far, we have been unable to find sufficient conditions which guaran- 
tee the existence of Coalition-Proof Nash equilibria for a reasonably large 
set of games. It is, of course, easy to see that coalition-proof equilibria exist 
in any model for which, given any set of actions by any proper subset of 
players, the game induced on the remaining players has a unique Nash 
equilibrium. In this case the set of coalition-proof equilibria coincides with 
the Pareto efficient frontier of the set of Nash equilibria. 

Nevertheless, Coalition-Proof Nash equilibria certainly exist in a larger 
number of games than do Strong Nash equilibria. Further, examination of 
a number of examples indicates that coalition-proof equilibria do exist 
quite frequently, and in such cases provide a valuable tool for refining the 
Nash equilibrium set. Bernheim and Whinston [4] consider several such 
examples. 

IV. GAMES IN EXTENSIVE FORM 

For games in extensive form, it is well known that the Nash equilibrium 
behavior of individual agents may be dynamically inconsistent. This 

4 In the example, strategy spaces are continuous. We have also constructed examples of 
three person games with finite sets of pure strategies which do not have Coalition-Proof Nash 
equilibrium in mixed strategies-see Bernheim and Whinston [3] and Peleg 181. 
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TABLE II 

A Two Player Game 

A, 5, 5 0, 6 0, 0 
A2 60 44 0.0 
A3 0.0 40 2. 2 

problem has led to a variety of refinements, such as perfect equilibria 
(Selten [ 11, 121) and sequential equilibria (Kreps and Wilson [ 73). 

In our context, it is natural to explore the implications of requiring 
dynamic consistency on the part of coalitions.’ If our objective is to iden- 
tify the class of self-enforcing agreements in environments where players 
have unlimited ability to communicate, but no recourse to binding con- 
tracts, such a requirement is essential. To clarify this point, we consider a 
simple example. Table II displays a static, two player game, where each 
player has three choices. There are two (static) Nash equilibria: (A2, B,) 
and (A3, &I. 

Suppose this game is played twice, with no discounting. The repeated 
game has a unique coalition-proof equilibrium, which is constructed as 
follows. In period 1, the players choose (A,, B,). If anyone deviates in 
period 1, second period play is (A,, B,); otherwise, players choose 
(A,, B2). Equilibrium payoffs are (9,9). 

In addition to being coalition-proof, this equilibrium is also perfect. 
However, when there are opportunities to communicate throughout the 
game, it requires the group to behave in a dynamically inconsistent fashion. 
In particular, suppose A deviates in period one. The agreement 
(equilibrium) specifies that A and B will play the static equilibrium 
(AX, B3) in period 2. However, prior to this second round of play, they 
clearly have an incentive to arrange a joint deviation to (A,, B2). In other 
words, (A3, B3) is not a coalition-proof equilibrium for this proper sub- 
game. Thus, the group cannot use it to enforce first period agreements if 
ongoing communication is possible. By this argument, the only possible 
outcome in period 2 is (A,, &-this is the unique coalition-proof 
equilibrium in the static game. Since this leaves no room for punishing 
deviations, players must choose (A,, Bz) in period one as well. 

We wish to generalize this argument, thereby producing a notion of 
“perfectly coalition-proof equilibria.” Intuitively, we would like such 

’ Bernheim and Ray [5] have explored this question for two player games with both finite 
and infinite horizons. This section extends their analysis of the finite horizon to cases 
involving more than two players. 
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equilibria to satisfy several conditions. First, in order to be self-enforcing, 
an intertemporal agreement reached by the whole group should be 
dynamically consistent, in the sense that it should not specify actions in any 
proper subgame that are Pareto dominated by another vector of actions 
that is self-enforcing in that subgame. Second, no proper subgroup of 
players should be able to make a mutually advantageous deviation from 
the agreement in any subgame. Now, however, not only must any such 
deviation itself be self-enforcing, but it must also be a dynamically con- 
sistent agreement for the deviating set of players. Similar criteria apply to 
deviations from deviations (and so on). Finally, the agreement reached by 
the coalition of the whole should be Pareto efficient within the set of such 
(dynamically) self-enforcing agreements. 

Formally, define the number of “stages” (t) in an extensive form game to 
be the maximum number of nested proper subgames. We restrict attention 
to games with a finite number of stages. We define our equilibrium concept 
inductively on both the number of players and stages (note that the 
following definition is consistent with the definition previously provided for 
one stage games).6 

DEFINITION. (i) In a single player, single stage game r, s* E S is a Per- 
fectly Coalition-Proof Nash equilibrium if and only if s* maximizes g’(s). 

(ii) Let (n, t) # (1, 1). Assume that Perfectly Coalition-Proof Nash 
equilibrium has been defined for all games with m players and s stages, 
where (m, s) 6 (n, t), and (m, s) # (n, t). 

(a) For any game r with n players and t stages, s* ES is perfectly 
self-enforcing if, for all JE J, sJ* is a Perfectly Coalition-Proof 
Nash equilibrium in the game T/s%,, and if the restriction of s* 
to any proper subgame forms a Perfectly Coalition-Proof Nash 
equilibrium in that subgame. 

(b) For any game r with n players and t stages, s* ES is a Perfectly 
Coalition-Proof Nash equilibrium if it is perfectly self-enforcing, 
and if there does not exist another perfectly self-enforcing 
strategy vector s E S such that g’(s) > g’(s*) for all i= l,..., n. 

It is helpful to conceptualize perfectly coalition-proof Nash equilibria in 
the two player case. Consider any multi-stage two player game. First, we 
restrict agents to play Pareto undominated equilibria in all of the terminal 
stages. These allow us to support various equilibria in subgames consisting 

6 Note that this definition is not equivalent to the statement that “a perfectly coalition-proof 
Nash equilibrium is coalition-proof in every proper subgame.” This alternative definition is, in 
our view, too strong-note that our simple example possesses no equilibrium which satisfies 
this condition. 
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of the terminal two-stage games; again, we restrict agents to play the 
equilibria which are Pareto undominated within this set. The recursion 
continues in this manner. Thus, our concept isolates the outcome 
[(A,, B2), (A,, B2)] for the game, as desired. 

This refinement bears some relationship to Rubinstein’s notion of 
“strong perfect equilibria” (see Rubinstein [lo]). In fact, it is easy to verify 
that every strong perfect equilibrium is perfectly coalition-proof. However, 
for the same reasons as before, we feel that the strong equilibrium concept 
is “too strong.” 

As with our original refinement, the existence of perfectly coalition-proof 
equilibria is problematic. Clearly, one cannot hope to obtain an existence 
theorem without placing additional structure on the extensive form. One 
natural and important restriction is perfect information. It is relatively easy 
to verify that every two-stage game of perfect information (such as the 
direct kingmaker game of Hurwicz and Schmeidler [6]) has a perfectly 
coalition-proof equilibrium. We have yet to examine games with three or 
more stages. 

V. CONCLUSION 

When players have unlimited ability to communicate and reach non- 
binding agreements regarding their strategy choices, a meaningful 
agreement requires more than the Nash best-response property. This is true 
because coalitions of players can typically arrange mutually beneficial 
agreements to deviate from a Nash equilibrium. Here we have introduced a 
stronger concept of self-enforcability that accounts for coalitional 
deviations, and have labeled the set of efficient self-enforcing agreements 
“Coalition-Proof Nash equilibria.” As we have argued above, we feel that 
the coalition-proof concept captures the notion of an efficient self-enforcing 
agreement for such environments in a more satisfactory way than two 
other, frequently used, communication-based refinements: strong Nash 
equilibria and the Pareto dominance refinement. 

It would be interesting to extend the analysis developed here in at least 
two directions. First, when pre-play communication is permitted, it may 
sometimes be natural to assume that players can correlate their strategies. 
Presumably, one could refine the notion of correlated equilibria (Aumann 
[2]) in the spirit of our analysis. 

Second, it would be desirable to extend our analysis of Perfectly 
Coaliton-Proof Nash equilibrium to infinite stage games. However, this 
case poses additional problems. Consider, for example, the infinitely 
repeated prisoner’s dilemma game. For certain ranges of discount rates, 
there are only two types of perfect (pure strategy) Nash equilibria: those 
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which repeat the static (inefficient) Nash equilibrium, and those which sus- 
tain cooperation by using the static Nash equilibrium to punish unilateral 
deviations. Is either perfectly coalition-proof? Suppose cooperation is 
possible in some period. Then it is possible in all periods (all subgames are 
identical). Since it strictly dominates the static Nash equilibrium, group 
rationality implies that the latter outcome can never arise. But then there is 
no way to enforce cooperation, so the static Nash equilibrium becomes a 
possible outcome once more (it is no longer dominated by another possible 
outcome). Yet this, in turn, allows us to use the static Nash equilibrium to 
enforce cooperation, so cooperation is possible once again. Clearly, the 
issues are complex, and require further study. 
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